Tag Archives: chaos

Chaotic Galaxies

Tell me, which side of the earth does this nose come from? Ha! (ALF)

Reading about strange attractors I came across with this book, where I discovered a way to generate two dimensional chaotic maps. The generic equation is pretty simple:

x_{n+1}= a_{1}+a_{2}x_{n}+a_{3}x_{n}^{2}+a_{4}x_{n}y_{n}+a_{5}y_{n}+a_{6}y_{n}^{2}
y_{n+1}= a_{7}+a_{8}x_{n}+a_{9}x_{n}^{2}+a_{10}x_{n}y_{n}+a_{11}y_{n}+a_{12}y_{n}^{2}

I used it to generate these chaotic galaxies:

Changing the vector of parameters you can obtain other galaxies. Do you want to try?

library(ggplot2)
library(dplyr)
#Generic function
attractor = function(x, y, z)
{
  c(z[1]+z[2]*x+z[3]*x^2+ z[4]*x*y+ z[5]*y+ z[6]*y^2, 
    z[7]+z[8]*x+z[9]*x^2+z[10]*x*y+z[11]*y+z[12]*y^2)
}
#Function to iterate the generic function over the initial point c(0,0)
galaxy= function(iter, z)
{
  df=data.frame(x=0,y=0)
  for (i in 2:iter) df[i,]=attractor(df[i-1, 1], df[i-1, 2], z)
  df %>% rbind(data.frame(x=runif(iter/10, min(df$x), max(df$x)), 
                          y=runif(iter/10, min(df$y), max(df$y))))-> df
  return(df)
}
opt=theme(legend.position="none",
          panel.background = element_rect(fill="#00000c"),
          plot.background = element_rect(fill="#00000c"),
          panel.grid=element_blank(),
          axis.ticks=element_blank(),
          axis.title=element_blank(),
          axis.text=element_blank(),
          plot.margin=unit(c(-0.1,-0.1,-0.1,-0.1), "cm"))
#First galaxy
z1=c(1.0, -0.1, -0.2,  1.0,  0.3,  0.6,  0.0,  0.2, -0.6, -0.4, -0.6,  0.6)
galaxy1=galaxy(iter=2400, z=z1) %>% ggplot(aes(x,y))+
  geom_point(shape= 8, size=jitter(12, factor=4), color="#ffff99", alpha=jitter(.05, factor=2))+
  geom_point(shape=16, size= jitter(4, factor=2), color="#ffff99", alpha=jitter(.05, factor=2))+
  geom_point(shape=46, size= 0, color="#ffff00")+opt
#Second galaxy
z2=c(-1.1, -1.0,  0.4, -1.2, -0.7,  0.0, -0.7,  0.9,  0.3,  1.1, -0.2,  0.4)
galaxy2=galaxy(iter=2400, z=z2) %>% ggplot(aes(x,y))+
  geom_point(shape= 8, size=jitter(12, factor=4), color="#ffff99", alpha=jitter(.05, factor=2))+
  geom_point(shape=16, size= jitter(4, factor=2), color="#ffff99", alpha=jitter(.05, factor=2))+
  geom_point(shape=46, size= 0, color="#ffff00")+opt
#Third galaxy
z3=c(-0.3,  0.7,  0.7,  0.6,  0.0, -1.1,  0.2, -0.6, -0.1, -0.1,  0.4, -0.7)
galaxy3=galaxy(iter=2400, z=z3) %>% ggplot(aes(x,y))+
  geom_point(shape= 8, size=jitter(12, factor=4), color="#ffff99", alpha=jitter(.05, factor=2))+
  geom_point(shape=16, size= jitter(4, factor=2), color="#ffff99", alpha=jitter(.05, factor=2))+
  geom_point(shape=46, size= 0, color="#ffff00")+opt
#Fourth galaxy
z4=c(-1.2, -0.6, -0.5,  0.1, -0.7,  0.2, -0.9,  0.9,  0.1, -0.3, -0.9,  0.3)
galaxy4=galaxy(iter=2400, z=z4) %>% ggplot(aes(x,y))+
  geom_point(shape= 8, size=jitter(12, factor=4), color="#ffff99", alpha=jitter(.05, factor=2))+
  geom_point(shape=16, size= jitter(4, factor=2), color="#ffff99", alpha=jitter(.05, factor=2))+
  geom_point(shape=46, size= 0, color="#ffff00")+opt

The Ikeda’s Galaxy

Chaos is the score upon which reality is written (Henry Miller)

Nonlinear dynamical systems are an enormous seam of amazing images. The Ikeda Map is an example of strange attractor which represents the movement of particles under the rules of certain differential equations.

I have drawn the trajectories followed by of 200 particles under the 2D-Ikeda Map with the same tecnique I used in this previous post, resulting this nice galaxy:

ikeda0.918

Wold you like to create your own galaxies? Here you have the code:

u=0.918 #Parameter between 0 and 1
n=200 #Number of particles
m=40 #Number of iterations
ikeda=data.frame(it=1,x1=runif(n, min = -40, max = 40), y1=runif(n, min = -40, max = 40))
ikeda$x2=1+u*(ikeda$x1*cos(0.4-6/(1+ikeda$x1^2+ikeda$y1^2))-ikeda$y1*sin(0.4-6/(1+ikeda$x1^2+ikeda$y1^2)))
ikeda$y2=  u*(ikeda$x1*sin(0.4-6/(1+ikeda$x1^2+ikeda$y1^2))+ikeda$y1*cos(0.4-6/(1+ikeda$x1^2+ikeda$y1^2)))
for (k in 1:m)
{
df=as.data.frame(cbind(rep(k+1,n),
ikeda[ikeda$it==k,]$x2,
ikeda[ikeda$it==k,]$y2,
1+u*(ikeda[ikeda$it==k,]$x2*cos(0.4-6/(1+ikeda[ikeda$it==k,]$x2^2+ikeda[ikeda$it==k,]$y2^2))-ikeda[ikeda$it==k,]$y2*sin(0.4-6/(1+ikeda[ikeda$it==k,]$x2^2+ikeda[ikeda$it==k,]$y2^2))),
u*(ikeda[ikeda$it==k,]$x2*sin(0.4-6/(1+ikeda[ikeda$it==k,]$x2^2+ikeda[ikeda$it==k,]$y2^2))+ikeda[ikeda$it==k,]$y2*cos(0.4-6/(1+ikeda[ikeda$it==k,]$x2^2+ikeda[ikeda$it==k,]$y2^2)))))
names(df)=names(ikeda)
ikeda=rbind(df, ikeda)
}
plot.new()
par(mai = rep(0, 4), bg = "gray12")
plot(c(0,0),type="n", xlim=c(-35, 35), ylim=c(-35,35))
apply(ikeda, 1, function(x) lines(x=c(x[2],x[4]), y=c(x[3],x[5]), col = paste("gray", as.character(min(round(jitter(x[1]*80/(m-1)+(20*m-100)/(m-1), amount=5)), 100)), sep = ""), lwd=0.1))