Tag Archives: DataViz

How Much Money Should Machines Earn?

Every inch of sky’s got a star
Every inch of skin’s got a scar
(Everything Now, Arcade Fire)

I think that a very good way to start with R is doing an interactive visualization of some open data because you will train many important skills of a data scientist: loading, cleaning, transforming and combinig data and performing a suitable visualization. Doing it interactive will give you an idea of the power of R as well, because you will also realise that you are able to handle indirectly other programing languages such as JavaScript.

That’s precisely what I’ve done today. I combined two interesting datasets:

  • The probability of computerisation of 702 detailed occupations, obtained by Carl Benedikt Frey and Michael A. Osborne from the University of Oxford, using a Gaussian process classifier and published in this paper in 2013.
  • Statistics of jobs from (employments, median annual wages and typical education needed for entry) from the US Bureau of Labor, available here.

Apart from using dplyr to manipulate data and highcharter to do the visualization, I used tabulizer package to extract the table of probabilities of computerisation from the pdf: it makes this task extremely easy.

This is the resulting plot:

If you want to examine it in depth, here you have a full size version.

These are some of my insights (its corresponding figures are obtained directly from the dataset):

  • There is a moderate negative correlation between wages and probability of computerisation.
  • Around 45% of US employments are threatened by machines (have a computerisation probability higher than 80%): half of them do not require formal education to entry.
  • In fact, 78% of jobs which do not require formal education to entry are threatened by machines: 0% which require a master’s degree are.
  • Teachers are absolutely irreplaceable (0% are threatened by machines) but they earn a 2.2% less then the average wage (unfortunately, I’m afraid this phenomenon occurs in many other countries as well).
  • Don’t study for librarian or archivist: it seems a bad way to invest your time
  • Mathematicians will survive to machines

The code of this experiment is available here.

Visualizing the Daily Variability of Bitcoin with Quandl and Highcharts

Lay your dreams, little darling, in a flower bed; let that sunshine in your hair (Where the skies are blue, The Lumineers)

I discovered this nice visualization some days ago. The author is also the creator of Highcharter, an incredible R wrapper for Highcharts javascript libray and its modules. I am a big fan of him.

Inspired by his radial plot, I did a visualization of the daily evolution of Daily Bitcoin exchange rate (BTC vs. EUR) on Localbtc. Data is sourced from here and I used Quandl to obtain the data frame. Quandl is a marketplace for financial and economic data delivered in modern formats for today’s analysts. There is a package called Quandl to interact directly with the Quandl API to download data in a number of formats usable in R. You only need to locate the data you want in the Quandl site. In my case data are here.

After loading data, I do the folowing steps:

  • Filtering data to obtain last 12 complete months
  • Create a new variable with the difference between closing and opening price of Bitcoin (in Euros)
  • Create a color variable to distinguish between positive and negative differences
  • Create the graph using Fivethirtyeight theme for highcharts

This is the result:

Apart of its appealing, I think is a good way to to have a quick overview of the evolution of a stock price. This is the code to do the experiment:

library(Quandl)
library(dplyr)
library(highcharter)
library(lubridate)
bitcoin=Quandl("BCHARTS/LOCALBTCEUR")
bitcoin %>% 
  arrange(Date) %>% 
  mutate(tmstmp = datetime_to_timestamp(Date)) -> bitcoin
last_date=max(bitcoin$Date)
if (day(last_date+1)==1) date_to=last_date else 
  date_to=ymd(paste(year(last_date), month(last_date),1, sep="-"))-1
date_from=ymd(paste(year(date_to)-1, month(date_to)+1,1, sep="-"))
bitcoin %>% filter(Date>=date_from, Date<=date_to) -> bitcoin
var_bitcoin <- bitcoin %>% 
  mutate(Variation = Close - Open,
         color = ifelse(Variation>=0, "green", "red"),
         y = Variation) %>% 
  select(x = tmstmp,
         y,
         variation = Variation,
         name = Date,
         color,
         open = Open,
         close = Close) %>% 
  list.parse3()
x <- c("Open", "Close", "Variation")
y <- sprintf("{point.%s}", tolower(x))
tltip <- tooltip_table(x, y)
hc <- highchart() %>% 
  hc_title(text = "Bitcoin Exchange Rate (BTC vs. EUR)") %>% 
  hc_subtitle(text = "Daily Variation on Localbtc. Last 12 months")%>% 
  hc_chart(
    type = "column",
    polar = TRUE) %>%
  hc_plotOptions(
    series = list(
      stacking = "normal",
      showInLegend = FALSE)) %>% 
  hc_xAxis(
    gridLineWidth = 0.5,
    type = "datetime",
    tickInterval = 30 * 24 * 3600 * 1000,
    labels = list(format = "{value: %b}")) %>% 
  hc_yAxis(showFirstLabel = FALSE) %>% 
  hc_add_series(data = var_bitcoin) %>% 
  hc_add_theme(hc_theme_538()) %>% 
  hc_tooltip(useHTML = TRUE,
    headerFormat = as.character(tags$small("{point.x:%d %B, %Y}")),
    pointFormat = tltip)
hc